Atmospheric Lidar Noise Reduction Based on Ensemble Empirical Mode Decomposition

نویسندگان

  • Jun LI
  • Wei GONG
  • Yingying Ma
چکیده

As an active remote sensing instrument, lidar provides a high spatial resolution vertical profile of aerosol optical properties. But the effective range and data reliability are often limited by various noises. Performing a proper denoising method will improve the quality of the signals obtained. The denoising method based on ensemble empirical mode decomposition (EEMD) is introduced, but the denoised results are difficult to evaluated. A dual field-of-view lidar for observing atmospheric aerosols is described. The backscattering signals obtained from two channels have different signal-to-noise ratios (SNR). To overcome the drawback of the simulation experiment, the performance of noise reduction can be investigated by comparing the high SNR signal and the denoised low SNR signal. With this approach, some parameters of the denoising method based on EEMD can be determined effectively. The experimental results show that the EEMD-based method with proper parameters can effectively increase the atmospheric lidar observing ability. * Corresponding author. Jun LI, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition

A novel noise filtering algorithm based on ensemble empirical mode decomposition (EEMD) is proposed to remove artifacts in electrocardiogram (ECG) traces. Three noise patterns with different power--50 Hz, EMG, and base line wander--were embedded into simulated and real ECG signals. Traditional IIR filter, Wiener filter, empirical mode decomposition (EMD) and EEMD were used to compare filtering ...

متن کامل

Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction

Empirical mode decomposition (EMD), a data analysis technique, is used to denoise non-stationary and non-linear processes. The method does not require any pre & post processing of signal and use of any specified basis functions. But EMD suffers from a problem called mode mixing. So to overcome this problem a new method known as Ensemble Empirical mode decomposition (EEMD) has been introduced. T...

متن کامل

Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) is a powerful algorithm that decomposes signals as a set of intrinsic mode function (IMF) based on the signal complexity. In this study, partial reconstruction of IMF acting as a filter was used for noise reduction in ECG. An improved algorithm, ensemble EMD (EEMD), was used for the first time to improve the noise-filtering performance, based on the mode-mixin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012